134 research outputs found

    Vulnerabilities in first-generation RFID-enabled credit cards

    Get PDF
    Credit cards ; Radio frequency identification systems

    On the Impossibility of Cryptography Alone for Privacy-Preserving Cloud Computing

    Get PDF
    Cloud computing denotes an architectural shift toward thin clients and conveniently centralized provision of computing resources. Clients’ lack of direct resource control in the cloud prompts concern about the potential for data privacy violations, particularly abuse or leakage of sensitive information by service providers. Cryptography is an oft-touted remedy. Among its most powerful primitives is fully homomorphic encryption (FHE), dubbed by some the field’s “Holy Grail,” and recently realized as a fully functional construct with seeming promise for cloud privacy. We argue that cryptography alone can’t enforce the privacy demanded by common cloud computing services, even with such powerful tools as FHE.We formally define a hierarchy of natural classes of private cloud applications, and show that no cryptographic protocol can implement those classes where data is shared among clients. We posit that users of cloud services will also need to rely on other forms of privacy enforcement, such as tamperproof hardware, distributed computing, and complex trust ecosystems

    The Ring of Gyges: Investigating the Future of Criminal Smart Contracts

    Get PDF
    Thanks to their anonymity (pseudonymity) and elimination of trusted intermediaries, cryptocurrencies such as Bitcoin have created or stimulated growth in many businesses and communities. Unfortunately, some of these are criminal, e.g., money laundering, illicit marketplaces, and ransomware. Next-generation cryptocurrencies such as Ethereum will include rich scripting languages in support of {\em smart contracts}, programs that autonomously intermediate transactions. In this paper, we explore the risk of smart contracts fueling new criminal ecosystems. Specifically, we show how what we call {\em criminal smart contracts} (CSCs) can facilitate leakage of confidential information, theft of cryptographic keys, and various real-world crimes (murder, arson, terrorism). We show that CSCs for leakage of secrets (Ă  la Wikileaks) are efficiently realizable in existing scripting languages such as that in Ethereum. We show that CSCs for theft of cryptographic keys can be achieved using primitives, such as Succinct Non-interactive ARguments of Knowledge (SNARKs), that are already expressible in these languages and for which efficient supporting language extensions are anticipated. We show similarly that authenticated data feeds, an emerging feature of smart contract systems, can facilitate CSCs for real-world crimes (e.g., property crimes). Our results highlight the urgency of creating policy and technical safeguards against CSCs in order to realize the promise of smart contracts for beneficial goals

    DECO: Liberating Web Data Using Decentralized Oracles for TLS

    Full text link
    Thanks to the widespread deployment of TLS, users can access private data over channels with end-to-end confidentiality and integrity. What they cannot do, however, is prove to third parties the {\em provenance} of such data, i.e., that it genuinely came from a particular website. Existing approaches either introduce undesirable trust assumptions or require server-side modifications. As a result, the value of users' private data is locked up in its point of origin. Users cannot export their data with preserved integrity to other applications without help and permission from the current data holder. We propose DECO (short for \underline{dec}entralized \underline{o}racle) to address the above problems. DECO allows users to prove that a piece of data accessed via TLS came from a particular website and optionally prove statements about such data in zero-knowledge, keeping the data itself secret. DECO is the first such system that works without trusted hardware or server-side modifications. DECO can liberate data from centralized web-service silos, making it accessible to a rich spectrum of applications. To demonstrate the power of DECO, we implement three applications that are hard to achieve without it: a private financial instrument using smart contracts, converting legacy credentials to anonymous credentials, and verifiable claims against price discrimination.Comment: This is the extended version of the CCS'20 pape

    HAIL: A High-Availability and Integrity Layer for Cloud Storage

    Get PDF
    We introduce HAIL (High-Availability and Integrity Layer), a distributed cryptographic system that permits a set of servers to prove to a client that a stored file is intact and retrievable. HAIL strengthens, formally unifies, and streamlines distinct approaches from the cryptographic and distributed-systems communities. Proofs in HAIL are efficiently computable by servers and highly compact---typically tens or hundreds of bytes, irrespective of file size. HAIL cryptographically verifies and reactively reallocates file shares. It is robust against an active, mobile adversary, i.e., one that may progressively corrupt the full set of servers. We propose a strong, formal adversarial model for HAIL, and rigorous analysis and parameter choices. We show how HAIL improves on the security and efficiency of existing tools, like Proofs of Retrievability (PORs) deployed on individual servers. We also report on a prototype implementation

    PROPYLA: Privacy Preserving Long-Term Secure Storage

    Full text link
    An increasing amount of sensitive information today is stored electronically and a substantial part of this information (e.g., health records, tax data, legal documents) must be retained over long time periods (e.g., several decades or even centuries). When sensitive data is stored, then integrity and confidentiality must be protected to ensure reliability and privacy. Commonly used cryptographic schemes, however, are not designed for protecting data over such long time periods. Recently, the first storage architecture combining long-term integrity with long-term confidentiality protection was proposed (AsiaCCS'17). However, the architecture only deals with a simplified storage scenario where parts of the stored data cannot be accessed and verified individually. If this is allowed, however, not only the data content itself, but also the access pattern to the data (i.e., the information which data items are accessed at which times) may be sensitive information. Here we present the first long-term secure storage architecture that provides long-term access pattern hiding security in addition to long-term integrity and long-term confidentiality protection. To achieve this, we combine information-theoretic secret sharing, renewable timestamps, and renewable commitments with an information-theoretic oblivious random access machine. Our performance analysis of the proposed architecture shows that achieving long-term integrity, confidentiality, and access pattern hiding security is feasible.Comment: Few changes have been made compared to proceedings versio

    Proofs of retrievability: theory and implementation,”

    Get PDF
    Abstract A proof of retrievability (POR) is a compact proof by a file system (prover) to a client (verifier) that a target file F is intact, in the sense that the client can fully recover it. As PORs incur lower communication complexity than transmission of F itself, they are an attractive building block for high-assurance remote storage systems. In this paper, we propose a theoretical framework for the design of PORs. Our framework improves the previously proposed POR constructions of Juels-Kaliski and Shacham-Waters, and also sheds light on the conceptual limitations of previous theoretical models for PORs. It supports a fully Byzantine adversarial model, carrying only the restriction-fundamental to all PORs-that the adversary's error rate be bounded when the client seeks to extract F . Our techniques support efficient protocols across the full possible range of , up to non-negligibly close to 1. We propose a new variant on the Juels-Kaliski protocol and describe a prototype implementation. We demonstrate practical encoding even for files F whose size exceeds that of client main memory

    Enter the Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts

    Get PDF
    Bug bounties are a popular tool to help prevent software exploits. Yet, they lack rigorous principles for setting bounty amounts and require high payments to attract economically rational hackers. Rather than claim bounties for serious bugs, hackers often sell or exploit them. We present the *Hydra Framework*, the first general, principled approach to modeling and administering bug bounties that incentivize bug disclosure. Our key idea is an *exploit gap*, a program transformation that enables runtime detection, and rewarding, of critical bugs. Our framework transforms programs via *N-of-N-version programming*, a variant of classical N-version programming that runs multiple independent program instances. We apply the Hydra Framework to *smart contracts*, small programs that execute on blockchains. We show how Hydra contracts greatly amplify the power of bounties to incentivize bug disclosure by economically rational adversaries, establishing the first framework for rigorous economic evaluation of smart contract security. We also model powerful adversaries capable of *bug withholding*, exploiting race conditions in blockchains to claim bounties before honest users can. We present *Submarine Commitments*, a countermeasure of independent interest that conceals transactions on blockchains. We design a simple, automated version of the Hydra Framework for Ethereum (ethereum.org) and implement two Hydra contracts, an ERC20 standard token and a Monty-Hall game. We evaluate our implementation for completeness and soundness with the official Ethereum virtual machine test suite and live blockchain data
    • …
    corecore